skip to main content


Search for: All records

Creators/Authors contains: "Shen, Shu-zhong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Piecing together the history of carbon (C) perturbation events throughout Earth’s history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO 2 ) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO 2 partial pressure and a biodiversity nadir. The isotopic excursions can be linked to an injection of ∼9,000 Gt of organic matter–derived C over ∼300 kyr and to near 20% of areal extent of seafloor anoxia. Earth system modeling indicates that widespread anoxic conditions can be linked to enhanced thermocline stratification and increased nutrient fluxes during this global warming within an icehouse. 
    more » « less
  2. null (Ed.)
    Abstract The Permian marine-terrestrial system of the North China block provides an exceptional window into the evolution of northern temperate ecosystems during the critical transition from icehouse to greenhouse following the late Paleozoic ice age (LPIA). Despite many studies on its rich hydrocarbon reserves and climate-sensitive fossil flora, uncertain temporal constraints and correlations have hampered a thorough understanding of the records of geologic, biologic, and climatic change from the North China block. We present a new chronostratigraphy based on high-precision U-Pb chemical abrasion–isotope dilution–thermal ionization mass spectrometry (CA-ID-TIMS) geochronology of tuffs from a near-complete latest Carboniferous–Permian succession in North China. The results indicate that the predominance of continental red beds, climate aridification, and the disappearance of coals and characteristic tropical flora were well under way during the Cisuralian (Early Permian) in the North China block, significantly earlier than previously thought. A nearly 20 m.y. hiatus spanning the early Kungurian to the mid-Guadalupian (or later) is revealed in the northern North China block to have close temporal and spatial associations with the closure and/or subduction of the Paleo-Asian Ocean and its related tectonic convergence. This long hiatus was concomitant with the prominent loss of the highly diverse and abundant Cathaysian floras and the widespread invasion of the monotonous Angaran floras under arid climate conditions in the North China block. Similarities in the floral and climate shift histories between Euramerica and North China suggest that aside from the regional tectonic controls and continental movement, extensive volcanism during the Cisuralian may have played a major role in the global warming and aridification in the aftermath of the LPIA. 
    more » « less
  3. null (Ed.)
    Abstract Current barriers hindering data-driven discoveries in deep-time Earth (DE) include: substantial volumes of DE data are not digitized; many DE databases do not adhere to FAIR (findable, accessible, interoperable and reusable) principles; we lack a systematic knowledge graph for DE; existing DE databases are geographically heterogeneous; a significant fraction of DE data is not in open-access formats; tailored tools are needed. These challenges motivate the Deep-Time Digital Earth (DDE) program initiated by the International Union of Geological Sciences and developed in cooperation with national geological surveys, professional associations, academic institutions and scientists around the world. DDE’s mission is to build on previous research to develop a systematic DE knowledge graph, a FAIR data infrastructure that links existing databases and makes dark data visible, and tailored tools for DE data, which are universally accessible. DDE aims to harmonize DE data, share global geoscience knowledge and facilitate data-driven discovery in the understanding of Earth's evolution. 
    more » « less